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SELF-CONSISTENT VLASOV DESCRIPTION OF THE
FREE ELECTRON LASER INSTABILITY

Ronald C. Davidson
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Mass., 02139

Han S. Uhm
Naval Surface Weapons Center
White Oak, Silver Spring, Md., 20910

A self-consistent description of the free electron laser instability
is developed for a relativistic electron beam with uniform density propa-
gating through a helical wiggler field 30 = —ﬁcoskoz§x - ﬁsinkozéy. The
analysis is carried out for the class of solutions to the Vlasov-Maxwell
equations described by fb(z,g,t) = nOG(Px)G(Py)G(z,pz,t) where P, and Py
are the exact canonical momenta invariants perpendicular to the beam pro-
pagation direction. The linearized Vlasov-Maxwell equations lead to an
exact matrix dispersion relation which is valid for perturbations about
general beam equilibrium Gp(p,) and includes coupling to arbitrary harmonic
number (n) of the fundamental wiggler wavenumber ko. No a priori restric-
tion is made to low beam density (as measured by w;/czké) or small wiggler
amplitude (as measured by ac/cko = e§/§mc2k0). Moreover, no assumption
is made that any off-diagonal elements in the matrix dispersion relation are
negligibly small. A detailed numerical analysis of the exact dispersion
relation is presented for the case of a cold electron beam described by
Go(pz) = 8(pz - pg). It is shown that the instability bandwidth increases
rapidly with increasing wiggler amplitude &c/cko. Moreover, except for
very modest values of wiggler amplitude, it is shown that the growth rate
calculated from an approximate version of the dispersion relation can be
in substantial error for large values of (k + nkg)/kg. Preliminary

estimates of the influence of beam thermal effects are also presented.




1. INTRODUCTION

In recent years there have been several theoreticaf*‘Sd;nd exper-
48> .
imental investigations of the free electron laser which generates
coherent electromagnetic radiation using an intense relativistic electron
beam as an energy source. With few exceptions, theoretical studies of the
free electron laser instability are based on highly simplified models
which often neglect beam kinetic effects and coupling to higher harmonics
f\dwb-o

of the fundamental wiggler wavenumber ﬁ05 or make use of very idealized
approximations in analyzing the matrix dispersion relation. The purpose
of the present paper is to develop a fully self-consistent description of
the free electron laser instability based on the Vlasov-Maxwell equatiouns.
The final matrix dispersion relation {Ee+—45)3 includes all beam kinetic
effects and coupling to arbitrary harmonic number (n) of the fundamental
wiggler wavenumber @iﬂ. Moreover, the final matrix dispersion relation

JLEq—t%5)] makes no a priori assumption that any off-diagonal elements are

negligibly small.

The present analysis assumes a relativistic electron beam with uniform
cross-section propagating in the z~direction through a helical wiggler field

described by [Eq. (2)]

0 = _A a - a ~
’B B cos kozex B sin koz'sy

where B = const. is the field amplitude and Ay = 2m/ky is the wiggler
wavelength. Moreover, we consider the class of exact solutions to the

Vlasov-Maxwell equations described by [Eq. (12)]5

fb(zs’€9t) = nOG(Px)é(Py)G(z’pz’t)’




where n, = const., Px and Py are the exact canonical momenta invariants

[Eqs. (6) and (7)], and spatial variations are assumed to be one-dimensional.

A detailed analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B

and 3.A) leads to the matrix dispersion relation [Eq. (45))

~
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where &c = eﬁ/?mc is the relativistic cyclotron frequency, w; = 4nn0e2/§m
is the relativistic plasma frequency-squared, ?mc2 is the characteristic
electron energy, g is a constant of order unity [Eq.(43)], the suscepti-
bilities xi}lw) and ngkuﬁ are defined in Eqs. (37) and (38), Dﬁ(w) is the
longitudinal (electrostatic) dielectric function defined in Eq. (39), and

D§+1(w) are the transverse (electromagnetic) dielectric functions defined

in_qu. (40) and (41). The striking feature of Eq. (45) is that the dis-
persion relation is valid for arbitrary harmonic number n. (No a priori
assumption has been made that n = +1). Moreover, the effective wavenumber
variables that occur in the various factors in Eq. (45) are k + nko,

k + (n+1)k0 and k + (n—l)ko. In addition, Eq. (45) describes stability
behavior for perturbations about general beam equilibrium distribution
GO(pz)’ and no a priori restriction has been made to low beam density (as
measured by wp/czkg) or small wiggler amplitude (as measured by ac/cko).
Apart from the linearization assumption, no approximations have been made

in deriving Eq. (45). For example, we have not assumed a priori that

Dk(w) v 0 and therefore neglected the corresponding term on the right-hand

ey NARE, 2 A YT
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side of Eq. (45). The latter point is very important. In Secs. 3.B and
3.C we present a detailed numerical analysis of the exact dispersion
relation [Eq. (45)] for the case of a cold electron beam described by
GO(pz) = G(pz - po). The, exact stability results are then compared with
the approximate results obtained from Eq. (45) by assuming at the outset

that Dt(w) Vv 0 and D:_l(w) ~ 0, which gives the reference dispersion

relation [Eq. (46)]
L T 1 W ¢))
C
DD W = 3 Tag [x, 7 ]1* .

For sufficiently large wiggler amplitude (as measured by ac/CkO)’ it

is shown in Sec. 3.C that the growth rate w, = Imw obtained from the
reference dispersion relation [Eq.(46)] can be in substantial error

for large values of (k + nko)/ko.

For completeness, and to orient the reader, it is useful to summarize

here the interaction wavenumbers and frequencies pertinent to the free

9,10

electron laser instability. We consider a cold electron beam (Secs.

3.B and 3.C) and look for simultaneous solutions to Dh(w) = 0 and

D:-l(w) = (O, Shown in Fig. 1 is a first-ouadrant plot (w > O and

k + nk0 > 0) of

and

w = [c2(k + nk, - k

2 2+1/2
0 ot wp]

versus k + nko. Note that there are generally four intersection points.

Solving the above equations simultaneously, the upshifted wavenumbers
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(intersections with k + nko > ko) are given by

- W 1/2 u
(k+nk0)i = Yk, 1+sb[ 1 +2 _L:L] J + y8, —L
u - cko Y8y, | - b cko 0°

and the downshifted wavenumbers (intersections with k+nk0 < ko) are given by

- w 1/2
(kﬁko'g = Yk,|1-8 11o_LLJ /Zli% Py

-1/2

where Y = (1 - B;) and Bb = Vb/c. In the limit of low beam density

with w;/czké << 1, ;zﬁé » the intersection wavenumbers can be approximated by

o o2 =
(k+nk0)u (1+6b)y ko = ko/(l—Bb),

and

(k)3 = (1-8)¥%ky = k/(148,).

For sufficiently large Yy, the upshifted wavenumber (k+nko)§ = (1+Bb)§2k0
can correspond to very short wavelengths and is the intersection region

of interest for the free electron laser instability.g’lo Depending on the
value of beam density (w;/czké) and wiggler amplitude (Gc/cko), however,
it is important to note that the dispersion relation (45) may also support

instability in the long wavelength intersection region corresponding to

(k + nko):. (See Sec. 3.C and Fig. 3).
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2. THEORETICAL MODEL AND ASSUMPTIONS

A. General Theoretical Model

The present analysis assumes a relativistic electron beam with
uniform cross section propagating in the z-direction. The beam density
is assumed to be sufficiently small that equilibrium space charge

effects are negligibly small with

0
E"=0 . ey

Moreover, the electron beam propagates through a helical wiggler

magnetic field described by 1,2,5

§0=—ﬁcoskozgx—ﬁsinkozéy . (2)

where B=const. is the field amplitude, X0=21r/k0 is the wavelength,
and éx and éy are unit Cartesian vectors in the plane perpendicular

to the propagation direction. The vector potential associated

with Eq. (2) is given by

éo-(B/ko)coskozéx+(ﬁ/k0)sinkozéy . (3)

It is also assumed that the beam density and current are sufficiently
small that the equilibrium self magnetic field can be neglected in
comparison with EO. 11

We consider perturbations in which the spatial variations are one-

dimensional in nature with 3/d x=0=3 Ay, and 3 /3 z generally non-zero.

Introducing the perturbed potentials,

§¢(z,t)
and

64%,:)-6Ax(z,t),§x+6Ay(z,t),:gy R




"

7
the electromagnetic field perturbations 6E and 6§ can be expressed in
the Coulomb gauge as

____9& I .
Gg(ﬁ,t) (z, t)ez Y 6A (z, t)e - 3T 6A (z, t)g (4)
and
GE-— -_ 6A (z, t)g + ~— 6A (z, t)% (5)
where 65=—V6¢-(1/c)(8/3t)6é and 6Q=VXGQJ In the present geometry,
there are two exact single-particle invariants in the combined
equilibrium and perturbed field configuration. These are the canonical
momenta, Px and P_, transverse to the beam propagation direction, i.e.,
P =p - E-Ao(z)- £ sa (z,t)=const. (6)
X fx ¢ 'x c x7? ?
Py=py- E-A (z)--— 6A (z,t)=const. (7)
0 - 0, \_,2
where Ax(z) (B/ko)coskoz and Ay(z)-(B/kO)sinkoz [Eq. (3)], and P,
and py are the transverse mechanical momenta.
The potential perturbations &8¢ (z,t), GAx(z,t) and GAy(z,t) are
determined self-consistently from the Maxwell equations
2 2
1 3 3 4re 3 0
2 2~ 2) 6A =" "¢ f d’p vx(fb_fb) ’ (8)
c 3t az
2 2
13 3 ) 41ref 3 0
— e e a——— ]} §A == —— de(f‘f), (9)
<c2 2 az2 y c y b b
22 (0
— 6¢=4mne|d p(f ), (10)
2 b
9z
where fg(z,g) is the equilibrium (5/5t=0) beam distribution, and fb(z,g,t)
in general solves the nonlinear Vlasov equation \\

Vx(B +GB)
L4y L—e[d,}\:‘+———-——-——

it z 32 %f (Z’R t)=0 . (11)

c

In Eqs. (8)-(11), the particle velocity y and momentum p are related by




mx-g/(l+g2/m2c2 1/2. Moreover, m is the electron rest mass, -e is the
electron charge, and c is the speed of light in vacuo.

For present purposes, we examine the class of exact solutions to

Eq. (11) of the form?

£, (2R, 0)=ng8 (P )S (P )G(z,p,,t) (12)

where n°=const., and Px and Py are the exact invariants defined in

Eqs. (6) and (7). Note from Eq. (12) that the effective transverse
motion of the beam electrons is "cold". Substituting Eq. (12) into

Eq. (11) and making use of Eqs. (6) and (7), we find that Eq. (12)
solves Eq. (11) exactly provided G(z,pz,t) evolves according to the one-

dimensional Vlasov equation

3 33 2 3 ~
{at T (X)) o }G(z,pz,t)—O . a3)

where ﬁ is defined by
- 2
H(z,t)=mic -ed¢(z,t) . (14)

In Eq. (14),

2.4, 22

YTmczs[m c +c“p 2,1/2

2,.0 2, 2,0
Jte (Ax+6Ax) +e (Ay+6Ay) , (15)

is the particle energy for Px=0=Py' Moreover, substituting Eq. (12)
into Eqs. (8)-(1l1l), the equations describing the nonlinear evolution of

the potential perturbations can be expressed as

2
2 2 4mn e dp dp
1_2?.5 - 9—2 8A = - g [(Agwa)J — G—A?J —z Go] R (16)
c” 3t dz me T Y -
2
2 2 4mne dp dp
1—2 LZ- - 3_2 SA = - _02— [(A0+6A )j —=2 G—AOJ -2 GO]’ ’ a7
c”at dz y me y oyl iy
32 ®
— 6¢-—4ﬂen0Jdpz[G-Go] ’ (18)
3z

VPO




where mic2 is defined in Eq. (15), Go(pz) is the equilibrium (93/9t =0)
beam distribution, G(z,p,,t) solves the nonlinear Vlasov equation (13),

and

2 2

Yme -(m c4+c P, +e B/k )l/2 (19)

is the energy in the absence of perturbations (6A =0=6A ). 1In obtaining
Eq. (19) from Eq. (15), use has been made of (A ) +(A0)2—lek =const.
[Eq. (3)].

Within the context of the present model, Eqs. (13) and (16)~(18)
describe the exact nonlinear evolution of the system for perturbations
about the general beam equilibrium GO(pz)' In this regard, we note from

Egs. (13) and (14) that the axial force Fz on an electron in the phase

space (z,pz) is given by

2
- e 0 0 2 2 3d¢
Fz- 3z H=- 2 c2 32 [ZAxéAx+2Ay6Ay+(6Ax) +(6Ay) ]J+e 3z - (20)
That is, the effective ponderomotive potential is proportional to

0 0 2 2
zAxéAx+2Ay6Ay+(6Ax) +(<5Ay) .

B. Linearization Approximation

For purposes of the stability analysis, we now consider the
linearized version of Eqs. (13) and (16)-(18). 1In this regard, it is

useful to introduce the dimensionless potentials defined by

5= 228 (21)
} yme

N

-

4 - e

| A= 5 (SARI0A) , (22)

; yme

| &
: 10, _e 0,,,0,_ ¢
y = T3 (AxiiAy) oY exp(tikoz) . (23)
. yme 0

G A AT T B

In Eqs. (21)-(23), ;mc2=const. denotes the characteristic mean energy

dhew. -

NG it




of the electron beam, and
b=, (24)

is the relativistic cyclotron frequency associated with the wiggler

field amplitude i. Making use of Eqs. (21)-(24), the perturbed force

GFz [Eq. (20)] and inverse relativistic mass factor Y;l [Eq. (15)] can be
approximated by

&

2 fl e yo A _ A3 4
éFz—-ymc {2 kg v 32 [exp(ikoz)GA_+exp( ikoz)6A+] v 5¢} s (25)
and ii &c ) )
1 _1_1 3 o [exp(1koz)6A_+exp(-1k0z)6A*] ., (26)
Yr Y 2¥ 0
24 22 /2

where ymc2=(m c +cp + B /k )1 [Eq. (19)]. Substituting Egs. (25)
and (26) into Eqs. (13) and (16)~(18), and combining Eqs. (16) and (17)
to give equations for GAxiiGAy, the linearized equations for 6G(z,pz,t),

6A+(z,t) and 8¢(z,t) can be expressed as

A, v, 32) 5G
27)
- 2§1% ya_ AL
yae® {7 S Y 57 [exp (1K) 6A texp (-1ko)6A, I- ¢} 377 Co(P):
2
2 W
S __5¢ = -2 fdp G , (28)
2 2 2
9z [
2
2 2 w dp
A9 3 Veaa- Rlsazsl —2
(72 7 ) sh 2(5A+Yf %o
¢ at 9z c
+ EE— exp(ik,z) -Jdp s¢ _ l-EE— [exp (ik z)é& +exp (-1ik z)GA ]
ckOPOYzYZCO p%/°A 0%/°%
dp
"Y3J 3 Go})' (29)
y .

o - . . ERUORIRITS - LRI Lt S N R e el
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k3

[Py W S

11
2
2 2 . w - dp
(2 - )i (7] 2o,
¢ at 9z c Y
(30)
ac - 56 1 ac N ~ J=3(dp
+ Py exp(-ikoz) {depz ;—-— 7 oo [exp(ikoz)6A_+exp(—1koz)6A+]y {__5 G }
0 0 -3 0
Y
In Eqs. (28)-(30),
lnmoe2
wie —— (31)
P In

is the relativistic plasma frequency-squared, and 63, 6Ai and &C are
defined in Eqs. (21), (22), and (24). In the limit of zero wiggler
amplitude (QC*O), we note that Eqs. (27)-(30) give the usual
uncoupled electromagnetic and electrostatic dispersion relations for

perturbations about a one-dimensional relativistic plasma equilibrium.
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3. STABILITY PROPERTIES

A. General Dispersion Relation

For the equilibrium configuration considered here, the electrons

are constrained to move on surfaces with Pg=px-(e/c)A2=0=py-(e/c)A3=P3
and ymc2=(m2c4+c2pi+§2/kg)1/2=const. This implies that the axial
momen tum P, is a constant in the equilibrium field configuration.
Moreover, the corresponding electron trajectory that passes
through (z,pz) at time t'=t is given by
P
' _Z '‘_
2'=2+ - (t'-t) ,
(32)
Pz=Pz»
where pz/Ym=vz is the axial velocity.
Without loss of generality we expand the field perturbations
in Eqs. (27)-(30) according to
6¢=§¢nexp[i(k+nko)z—imt] .
exp(ikoz)6§_=ZA;_1exp[i(k+nko)z—imt] s (33)
n

+ .
exp(-ikoz)6X+-£Ah+lexp[i(k+nko)z—1wt] .

where x0-2n/k0 is the periodicity length of the wiggler field. Here

we assume that k is real and Imw > O, corresponding to temporal growth.
A completely parallel treatment can be developed for spatially growing
perturbations (Imk < 0) and real oscillation frequency w. Substituting
Eq. (33) into Eq. (27) and integrating along characteristics, we obtain

for the perturbed distribution function GG(z,pz,t)




— ———
.
n e .,

.

13

3C

- 2°%0
SG=yme 5;: gi(k+nk0)exp{i(k+nk0)z]

l ¢ y ,,- +
x[ (a7 +AY )me (34)

t
xj dt'exp[i(k+nko)vz(t'-t)—imt']

Integrating with respect to t' in Eq. (34) with Imw > O gives

2 BGO (k+nk0)

apz a w-(k+nk0)vz

6G=;mc exp[i(k+nk0)z-iwt]

(35)

1% y mat
“[ n 2 cky Y A p* +1)J ’

4+c P, +B /k )1/2

where vz=pz/ym and ymc2=(m2c
From Eqs. (28)-(30) for the field perturbations, it is evident
that integrals of the form wijdpzdc and wi;JdeGG/Y are required.

Therefore, comparing with Eq. (35), it is convenient to introduce the

effective susceptibilities xéj)(w) defined by

(k+nk, )G, /3p
(0) - 22 0 (4] z
X, (w)=ymec mpjdpz w—(k+nk0)vz , (36)
_¢ dp,_ (k+nk,)3G,/3p
xﬁl)(w)=?mc2wzvj z 0°°70" ", (37)
P Y w-(k+nk0)vz
dp_ (k+nk,)3G./3p
2) - 2 2- z 0°°70"%Fg
Xn (w)=yme “pY JYZ w—(k+nk0)vz * (38)

For future notational convenience we also introduce the longitudinal

and transverse dielectric functions defined by

DL (w)=c (letmie ) 24y 2 () (39)
D:+1(w)=w2-c2[k+(n+1)k0]2-a1w§ . (40)
D:_l(w)=w2-c2[k+(n-1)k0]2-alw§ , (41)

¢ e a —a = = . —,

LM




where

_( 9r,
Gl=YJ ~ Go(Pz)

and

-3 dp
] G

14

(42)

(43)

for future reference. Note that the constants a, and a, are of order

unity whenever G

1

0 is strongly peaked around y=y.

3

We substitute Eqs. (33) and (35) into the field equations (28)-(30)

and make use of the definitions in Eqs.

forward algebra, we obtain the matrix equation relating at

(36)-(43).

“2 ~2
T ,1 Y (2) 1 Y% 2, (2)
D1t 2 23 (aqutx, ™) 2 7.3 (guptx ™)
k ¢k
0 0
‘32 2
2
c ko c ko
S ¢ b Y%
cko Xn ! ck0 Xn ’

The condition for a nontrivial solution to Eq.

of the matrix vanish.

After some straight-

n+l’ An-l’ and ¢
_ Ye X(1)
’ cko n
P
c (1)
T ck Xn
0
L
2Dn \\¢

(44)

(44) is that the determinant

This gives the dispersion relation

~2
w
DL (D WD) (@)= 3 =7 [0, @HD ) (@]
0

ALY @ 120k ta g2 (P @13

which determines the complex eigenfrequency w in terms of k+nk0, k

2 2

and w /c 0

(45)

2
0) wp!

The striking feature of Eq. (45) is that it is valid for arbitrary

harmonic number n.

(No a priori assumption has been made that n=:1.)

Moreover, the effective wavenumber variable k'-k+nk0 occurs in every

factor in Eq. (45).

In addition, Eq. (45) describes stability behavior

+

o T Y

Cae oe Sghcamt




for general equilibrium distribution Go(pz), and no a priori restriction

has been made to low beam density (as measured by wﬁ/czké) or small wiggler

amplitude (as measured by &c/cko). Since Eq. (45) contains no approxima-
tions apart from the linearization approximation, we rerer to Eq. (45)
as the full dispe.sion relation (FDR).

In circumstances where the beam density is low and the wiggler amplitude

is very small, Eq. (45) supports solutions near Dﬁ(w)=0, D:+1(w)=0

and n:_l(m)-o. In this case, it is instructive to simplify Eq. (45)
near the simultaneous zeroes of Dﬁ(m)=0 and D:_l(w)=0. (Here we assume

DT+1#0.) Equation (45) then reduces to the simplified approximate form

n
~2
L, \.T 1 Y (1) 2
D (Wb _,(w)= 35— [xn (C)) (46)
c ko

In the subsequent analysis, we refer to Eq. (46) as the reference dis-

persion relation (RDR).

B. Dispersion Relation for a Cold Electron Beam

As a first application, we consider the dispersion relation (45)

for the case of a cold beam equilibrium described by

Go(pz)=6(pz-po) R (47)

where Py is related to the mean energy ?mc2 by

- 2,24 22 2.2, 2

yme =(m“c +¢ p0+e leko)l/2 .

(48)

It it straightforward to show from Eqs. (47) and (48) that Idpzynco(pz).;“
so that

u1=u3=1 ’ (49)

follows from Eqs. (42) and (43). Substituting Eq. (47) into Eqs. (36)-

(41), the effective susceptibilities and dielectric functions for a




|
| 16 :
f cold electron beam can be expressed as »
E (0) 2 2 /7
| Xy (W)=-c” (kenk,) B 5 (50)
i {w-(k+nk, )V, ]
E 0°'b | 3
[wB, —c(k+nk,) ) 1
xél)(w)=c(k+nko)w2 b 0 7 (51) f‘
P [w-(k+nk0)vb] - T
2
[2wB, -=c (k+nk,) (1+8) ] :
xsz)(w)=c(k+nko)w2 > 0 5 b, (52) ]
[w-(k+nko)Vb]
L 2 2 wr /v’ ‘
D (wy=c” (kinkp)© J1- P 5{ (53) ?
[w—(k+nk0)Vb] %
D:+1(w)=w2-c2[k+(n+1)ko]2-w§ . (54) %
&
D:_l(m)=w2-c2[k+(n—l)k0]2-w§ : (55) Z
1

In Eqs. (50)-(55), Vb=p0/§m is the beam velocity, and B, is defined by
Bb-Vb/c. Substituting Eqs. (50)-(55) into Eq. (45) and carefully

ombining and simplifying terms on the right-hand side, the full dis-
ersion relation (FDR) for the free electron laser instability can be

¢ :pressed as

(- Getnikg) ¥y 12-a/77} P e etk )k 122

e

x{wz-czl(k+nk0)+k0]2-w§}

w !
c 2,2 2 2 22 2 g
- czk(z) mp[u) -C (k+nk0) -C ko—wp (56) i

x{[w-(k+nk0)vb]2+2vb(k+nko)[w-(k+nk0)vb]
-cz(k+nko)2/;2-w§ ).

Note the exact cancellations that have occurred on the right-hand side of




Eq. (56). Making use of ;_2=1-B§, the full dispersion relation (FDR)
in Eq. (56) can be expressed in the equivalent form
) 2_2,-2. 2 2 g2 2 &
{{w (k+nkq)V, ] wp/Y Huw®-c [ (k#nky) kol wp} s
2 2 2 2 F
x{w -c [(k+nko)+k0] -wp} i
a2 57 t&
=- 5 w2 (?e? (kmk ) 2-c Al 14
kg P P Fi

2_2 2_2
x[w™=c" (k+nky) - .
[w™=c" (k+nkg) w,]

Moreover, substituting Eqs. (50), (51), (53), and (54) into Eq. (46),
the reference dispersion relation (RDR), which is approximately valid

for low beam density and very low wiggler amplitude, can be expressed as

2 2

(o= Gk )V, 1%-u? 77} fu? - [ etmicg) -k 1-u2)

2 (58)

. 2
@y, [wBb-C(k+nk0)]
22 %
0

Approximating [w-(k+nk0)Vb]2=m§/-y'2 in the denominator on the right-hand

1
=7 2
[m-(k+nko)Vb]

side of Eq. (57), the reference dispersion relation (RDR) becomes

(T Getnieg) v, 1202 /77 -2 Lotk ) -k ) 22

(59)

.2
w
-2 2
= %- 2c2 wzy [wBb-c(k+nko)] .
ks P
0
C. Numerical Analysis of Dispersion Relation

In this section, we summarize the results of numerical studies
of the reference dispersion relation (59) and the full dispersion
relation (57) for a broad range of dimensionless system parameters

N 2, 2.2 -
wc/cko, wp/c ko, and v.




Typical results are summarized in Fig. 2 for ¥=2 and moderate values
of wiggler amplitude (&c/ckO-O.S) and beam density (wi/czkgso.é). For

such large beam density and wiggler amplitude, we note from Fig. 2(a)

r4

that the growth rate w,=Imw obtained from the reference dispersion

i =
b
relation (59) can be in substantial error for large values of (k+nk0)/k0.

]
This follows since the dashed curve in Fig. 2(a) [Eq. (59)] deviates F

significantly from the solid curve {Eq. (57)] for large values of
(k+nko)/ko. On the other hand, from Fig. 2(b), both the reference
dispersion relation (59) and full dispersion relation (57) give very
similar values of the real oscillation frequency w _=Rew. Moreover, the

oscillation frequency w is linearly proportional to (k+nko) over the

entire range of unstable wavenumbers. We also note from Fig. 2(a) that
the maximum growth assumes a relatively large value, [mi]max=0.3 cko,

A 2,22
for (wc/cko, wp/c ko)-(O.S, 0.4).

To contrast with Fig. 2, we show in Fig. 3 a plot of normalized +4

growth rate wi/ck versus (k+nk0)/k0 for ;=2, moderate beam density

0
(wﬁ/czkg-O.b), and small wiggler amplitude (&C/cko=0.l). In this case
the reference dispersion relation (59) and full dispersion relation

(57) give nearly identical growth rate curves. Note also from Fig. 3

that there are two unstable wavenumber bands [corresponding to two

intersection regions of the w versus k+nk

0
D'r (w)=0] for (& /ck m2/c2k2)-(0 1, 0.4). Moreover, the maximum
n-1 c" 70 Tp 0 i i

curves from Dz(w) = (0 and

growth rate assumes a relatively small value, [wilmax=0.06 cko, for
the small value of wiggler amplitude chosen in Fig. 3.

Shown in Fig. 4, for y=2 and small wiggler amplitude (o /cky=0.1),
is a plot of normalized growth rate wi/CkO versus (k+nk0)/ko [Eq. (57)]
for several values of normalized beam density w;/czkg. An important

feature of Fig. 4 is the fact that the instability bandwidth remains
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reasonably narrow for wi/czkg in the range 0.1 < wi/czkg <1l. This is in
contrast to Fig. 5 where wiICkO is plotted versus (k+nk0)/k0 [Eq. (57)]

for y=2, moderate wiggler amplitude (&C/ck0=0.5), and values of mi/czkg

identical to Fig. 4. The rapid increase of instability bandwidth

e
. L.

with normalized wiggler amplitude &c/cko is also evident from Fig. 6
where the growth rate is plotted for y=2, wi/c2k8=0.4 and several
values of Goc/ck0 {Eq. (57)].

We now examine the case where y is large. Figures 7-11 show
plots of normalized growth rate wi/ckO versus (k+nko)/k0 for
;fSO and a wide range of values of normalized wiggler amplitude
&)c/ck0 and beam density wi/czkg. In all cases, we note from
Figs. 7-11 that the instability bandwidth is large. This is in contrast
with the low-y case where the bandwidth is relatively narrow for small
values of Gc/cko (Fig. 3). We also find (Figs. 7 and 8) that the
growth rates determined from the reference dispersion relation (59)
and the full dispersion relation (57) are different for both small
wiggler amplitude (Fig. 8) and moderate wiggler amplitude (Fig. 7).
This is in contrast with the low-y case where the reference dispersion
relation (59) gives a good estimate of the growth rate for small values

of &c/cko (Fig. 3). Comparing Figs. 4 and 9, for small wiggler

amplitude (&c/ckoto.l), it is evident that the growth rate is considerably
larger for large values of Y. On the other hand, comparing Figs. 5 and
10, for moderate wiggler amplitude (&c/ck0=0.5), the growth rate is only

slightly larger for large values of Y.

Finally, for (k+nko)2V§ >> wi/;z, we expect the strongest interaction
between the longitudinal and transverse modes, Dk(w)=0 and D:_l(w)-O,

to occur for the critical value of wavenumber given in Sec. 1, i.e., for

. -2
(k+nk0)u-(1+8b)'y kg « (60)
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For 8,=1 and v=50, Eq. (60) gives (k+nk) =5000 k,. For y=50, we note

from Figs. 7-11 that the maximum growth rate indeed occurs for (k+nk0)/k0x5000.

D. Influence of Beam Thermal Effects on Stabilitv Properties

The main purpose of this paper is to develop a stability formalism
for general beam equilibrium distribution Go(pz) (Secs. 2.A-3.A) and to
study detailed stability properties for the case of a cold electron beam
with Go(pz)=6(pz-p0) (Secs. 3.B and 3.C). For completeness, however,
in this section we make some preliminary estimates of the influence of
beam thermal effects on stability behavior. As a simple example, we
assume a beam equilibrium distribution of the form

Go(py)= ‘;—0 — 5 (61)
(p,~Py) +4,
where A, is the characteristic momentum spread about the mean momentum Pg:

0

We further assume that the momentum spread A is small in comparison

0
with the directed momentum Pg: i.e.,

AO << Py - (62)

Making use of Eqs. (36), (39), (61), and (62), the longitudinal dielectric

function can be approximated by

w2/;2
DF (w)=e? (knk ) (1— P - 2J , (63)
[w-(k+nk0)Vb+i|k+nkO|Ao/Y%ﬂ

4 2 2, 2°

for 8, << Pgr In Eq. (63), ;mc2=(m2c +c"pyte 132/k(2))1/2

is the mean

energy [Eq. (48)]), and V =p0/§m is the directed beam velocity. We

b
note from Eq. (63) that the fundamental longitudinal mode obtained from

nﬁ(u)ao is heavily Landau damped by thermal effects whenever

A2 wz
(nkgy? =25 > 2 (64)
Yya Y
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It is useful to express the effective momentum spread AO in

24, 22 24

terms of an equivalent energy spread Ay. From Ymc2=(m c +c pz+e B2/k2 1/2

0 ?
- 22 - -
we estimate Ay=p0A0/ym2c , or equivalently Ay/y=BbA0/ymc. Equation (64)

can then be expressed as

2 =2

2 2 - 2 2
c” (ktnk) " (Ay/Y)">B @Y (65)
for AO << pg» OF equivalently for Ay/y << Bi. I1f we estimate the wave-

number of interest for the free electron laser instability by (k+nk0)=

(1+sb);2k0 [Eq. (60)], then Eq. (65) gives
2 2

: 2 12 sz
- 2 ¢
(I+8.)" v ¢ ko

Equation (66) gives an estimate of the energy spread required for heavy

B

wy/n? > (66)

Landau damping of the fundamental longitudinal mode obtained from Dk(w)=0.
Whenever Eq. (66) is satisfied, the waves are heavily damped (linearly)
and the free electron laser instability does not occur. Equation (66)
constitutes a very stringent requirement on energy spread. For example,
for y=5, sbzl and wi/czkgso.S, Eq. (66) predicts stabilization for

(Ay/7)2 > 5x107°

, i.e., for a fractional energy spread Ay/y of about 7%.
From a practical point of view, for given values of Yy and energy
spread Ay, the reverse of the inequality in Eq. (66) can be used to

determine the range of normalized beam density wé/czkg required for

the free electron laser instability to occur, i.e.,

2 2
w _ _ o (1+8)
—25 > Y evm? —2— . (67)
c ko Bb

Whenever Eq. (67) is satisfied, it is important to note that the inequality
in Eq. (65) will provide stabilization of the instability growth rate
for sufficiently large values of wavenumber (k+nko). This implies a

natural tendency of beam thermal effects to limit the instability bandwidth,

which should be contrasted with the cold-beam stability results in Sec. 3.C.

et e e it
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4. CONCLUSIONS

In this paper, we have developed a fully self-consistent description
of the free electron laser instability based on the Vlasov-Maxwell equa-
tions. As summarized in Sec., 2, the present analysis assumes a relativis-
tic electron beam with uniform cross section propagating through a helical

wiggler field ,QO = —ﬁcosk z '%x - ﬁsin koz ,%y [Eq.(2)]. Moreover, we

0

consider the class of exact solutions to the Vlasov-Maxwell equations

described by £ (z,p,t) = n 8(P_)S(P )G(z,p ,t) [Eq.(12)). A detailed
b "%, 0" x y z

analysis of the linearized Vlasov-Maxwell equations (Secs. 2,B and 3,A)

leads to the exact matrix dispersion relation in Eq. (45). The striking

feature of Eq. (45) is that the dispersion relation is valid for arbitrary

harmonic number n., Moreover, Eq. (45) describes stability behavior for
perturbations about general beam equilibrium distribution GO(pz)’ and

no a priori restriction has been made to low beam density (as measured

by w;/czké) or small wiggler amplitude (as measured by Gc/cko). In Secs.
3.B and 3.C we present a detailed numerical analysis of the full disper-
sion relation [Eq.(57)] and the reference dispersion relation [Eq.(59)]

for the case of a cold electron beam described by Go(pz) = 6(pz-po).
Except for very modest values of wiggler amplitude, it is shown in Sec. 3.C

that the growth rate w, = Imw obtained from the reference dispersion

i

14
relation can be in substantial error for large values ogp(k4-nk0)/ko.
el

An important feature of the stability analysis in Sec.fB.C is the fact

that the instability bandwidth increases rapidly with increasing Qc/cko. Q
Moreover, the instability bandwidth is considerably larger for large

’:
values of Y (Figs. 7 - 11) than for moderate values of y (Figs. 2 - 6). E
1
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Finally, in Sec. 3.D, we have made preliminary estimates of the influence
of beam thermal effects on stability behavior. In particular, assuming
that Go(pz) is given by the Lorentzian distribution in Eq.(61), it is
found that waves with wavenumber (k+—nk0) ~ (li—Bb)?zko are heavily Landau
damped whenever the fractional energy spread AY/Y exceeds the rather

modest value in Eq. (66),
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FIGURE CAPTIONS

Intersection of dispersion curves Dk(w) = 0 and D:_l(m) = 0.

Plot of normalized (a) growth rate wi/koc and (b) real oscillation

frequency wr/koc versus normalized wavenumber (k+nk0)/k0
for vy = 2, Gc/ck0 = 0,5 and w;/czks = 0.4. Solid curves are
obtained from full dispersion relation [Eq. (57)]1. Dashed

curves are obtained from reference dispersion relation [Eq. (59)].

Plot of normalized growth rate wi/koc versus (k-i-nko)/kO for
Y = 2, ac/cko = 0.1 and w;/czké = 0.4 obtained from Eq. (57)

(solid curves) and Eq., (59) (dashed curves).

Plot of normalized growth rate wi/koc versus (k-l-nko)/k0 obtained
from Eq. (57) for y = 2, aclcko = 0.1 and several values of

27.2,2
mp/c ko.

Plot of normalized growth rate wi/koc versus (k+nk0)/k0 obtained
~
from Eq. (57) for v = 2, wc/cko = 0,5 and saveral values of

2
L)

G;/czko
Plot of normalized growth rate wi/koc versus (k+nk0)/k0 obtained
from Eq. (57) for vy = 2, w;/czké = 0.4 and several values of
ac/cko.

Plot of normalized growth rate wi/koc versus (k+~nk0)/ko for

Y = 50, aclcko = 0,5 and w;/czké = 0,4 obtained from Eq. (57)

(solid curve) and Eq. (59) (dashed curve).
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Plot of normalized growth rate wi/koc versus (ki-nko)/ko
for y = 50, (T)C/cko = 0,1 and w;/czké = 0.4 obtained from

Eq. (57) (solid curve) and Eq. (59) {(dashed curve).

Plot of normalized growth rate wi/koc versus (k+nk0)/k0

obtained from Eq. (57) for y = 50, &C/ck0 = 0.1 and several

2
.

272
values of wp/c ko

Plot of normalized growth rate wi/koc versus (k+—nko)/ko

obtained from Eq. (57) for y = 50, (?)C/ck0 = 0.5 and several
values of w?/c?k2.

P 0
Plot of normalized growth rate wi/koc versus (k4-nk0)/k0

obtained from Eq. (57) for y = 50, w;/czké = 0,4 and several

values of wc/cko.
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